Hierarchical Image Segmentation Based on Semidefinite Programming
نویسندگان
چکیده
Image segmentation based on graph representations has been a very active field of research recently. One major reason is that pairwise similarities (encoded by a graph) are also applicable in general situations where prototypical image descriptors as partitioning cues are no longer adequate. In this context, we recently proposed a novel convex programming approach for segmentation in terms of optimal graph cuts which compares favorably with alternative methods in several aspects. In this paper we present a fully elaborated version of this approach along several directions: first, an image preprocessing method is proposed to reduce the problem size by several orders of magnitude. Furthermore, we argue that the hierarchical partition tree is a natural data structure as opposed to enforcing multiway cuts directly. In this context, we address various aspects regarding the fully automatic computation of the final segmentation. Experimental results illustrate the encouraging performance of our approach for unsupervised image segmentation.
منابع مشابه
An Improved Pixon-Based Approach for Image Segmentation
An improved pixon-based method is proposed in this paper for image segmentation. In thisapproach, a wavelet thresholding technique is initially applied on the image to reduce noise and toslightly smooth the image. This technique causes an image not to be oversegmented when the pixonbasedmethod is used. Indeed, the wavelet thresholding, as a pre-processing step, eliminates theunnecessary details...
متن کاملA hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کاملA hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کاملSemidefinite Clustering for Image Segmentation with A-priori Knowledge
Graph-based clustering methods are successfully applied to computer vision and machine learning problems. In this paper we demonstrate how to introduce a-priori knowledge on class membership in a systematic and principled way: starting from a convex relaxation of the graph-based clustering problem we integrate information about class membership by adding linear constraints to the resulting semi...
متن کاملEnsemble Clustering using Semidefinite Programming
We consider the ensemble clustering problem where the task is to 'aggregate' multiple clustering solutions into a single consolidated clustering that maximizes the shared information among given clustering solutions. We obtain several new results for this problem. First, we note that the notion of agreement under such circumstances can be better captured using an agreement measure based on a 2D...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004